Sustainable Coatings: Utilizing Lignin for the Development of Biobased Resins

Mojgan Nejad

Associate Professor,

Department of Forestry and Department of Chemical Engineering & Materials Science Michigan State University

Wood Coating Conference

Sept. 26th, 2024

1

Have you ever used lignin?

Main Drivers: Together for Sustainability

"Goals: To enhance sustainability within the supply chain of chemicals"

Why Lignin?

- Lignin is the second most abundant natural polymer after cellulose in the world, made up 1/3 of dry mass of plants
- 2. Sustainable, renewable, and biodegradable
- **3.** Produced as byproduct of pulp and paper or bioethanol production, thus the lignin price will not fluctuate with the price of oil and gas
- 4. Excellent compatibility with wood

Lignin Variations in Biomass

Properties of lignin varies based on biomass source (Hardwood, Softwood, Wheat Straw, Corn Stover, Peanut Shell, Bagasse)

Softwood 25-35%

Hardwood 18-25%

Annual Crops 15-25%

Lignin Variations: Isolation Methods

Properties of lignin also varies

based on the isolation methods

(Kraft, Sulfite, Soda, Organosolv,

Ionic Liquid, Enzymatic

Hydrolysis)

Lignin Characterization

- Chemical analysis: FTIR, ³¹P NMR, ¹³C NMR, ¹H NMR, 2D-NMR,
- Thermal analysis: Glass transition temperature (Tg) using DSC, Thermal stability (TGA)
- Molecular size: Molecular weight (Mw), molecular number (Mn) and PDI using GPC (analyzing acetylated lignin)
- Moisture content: Gravimetrically and TGA
- Ash content: Furnace at 525°C for 4 hrs
- Elemental analysis: Percentage of N, S, P, K, Mg, Ca, Na, B, Zn, Mn, Fe, Cu and Al

Hydroxyl Content of Lignin: ³¹P NMR

Example of Some Measured Lignin Properties

Sample ID	Mw (D)	PDI	S (%)	Na (%)	К (%)	Hydroxyl Value (mmole/g)			
						Aliphatic-OH	Aromatic-OH	соон	Total-OH
1-KR-SW	6420	3.99	1.93	0.82	0.094	2.00	3.15	0.41	5.56
2-OS-SW	4970	4.02	0.17	0.01	0.004	0.96	2.10	0.45	3.51
3-OS-HW	3790	2.63	0.02	0.01	0.001	1.33	2.68	0.31	4.32
4-KR-SW	6970	3.63	2.56	0.53	0.064	1.70	4.63	0.53	6.86
5-SO-WS	3770	2.77	0.68	0.11	0.044	1.30	3.04	0.75	5.08
6-KR-HW	3070	2.36	2.10	0.19	0.044	1.04	4.38	0.2	5.62
7-KR-SW	6800	4.08	1.87	0.14	0.042	2.03	3.41	0.48	5.92
8-SO-HW	6460	3.51	1.96	0.75	0.902	2.22	3.18	1.16	6.56
9-OS-CS	5410	2.83	0.10	0.01	0.010	0.62	2.53	0.38	3.53
10-KR-SW	9390	4.06	1.43	0.05	0.015	2.18	3.96	0.50	6.64
11-KR-SW	5440	4.94	1.78	0.19	0.027	2.35	3.74	0.45	6.53
12-OS-HW	4070	2.48	0.02	0.01	0.022	0.80	3.07	0.26	4.13
13-OS-WS	4950	2.73	0.09	0.01	0.008	1.11	2.09	0.41	3.61
14-SO-HW	3410	2.61	0.10	0.08	0.013	1.16	3.98	0.62	5.76
15-SO-WS	3889	2.51	0.29	0.37	0.001	1.22	3.14	1.1	5.46

Challenges

- Impurities, some contain high sulfur content
- Non uniformity, lack of consistency, high molecular size distribution (PDI)
- Lack of functionality or accessibility of functional groups for reaction with other compounds
- Dark color (usually dark brown)
- In some cases, unpleasant odor (Lignoboost Kraft softwood lignin)

Lignin-Based Resins

- 1. Lignin as Phenol Replacement: Lignin-Based Phenolic Resin
- 2. Lignin as Polyol Replacement: Lignin-Based Polyurethane Resin
- 3. Lignin as Bisphenol-A Replacement: Lignin-Based Epoxy Resin
- **4. Biobased UV-Stabilizer:** Encapsulating Lignin in Halloysite Nanotubes (nanoclay) as natural biobased UV-Stabilizer

Resin Properties Measurements

- 1. Solid content
- 2. Viscosity with Rheometer at 1000 1/s shear rate
- 3. Gelation time (digital viscometer)
- 4. Curing and Tg (differential scanning calorimeter, DSC)
- 5. Curing and cross-linking density (Dynamic mechanical analyzer, DMA)

Lignin-Based Phenolic Resins

Lignin: Natural Polyphenolic Compound

Glazer, A. W., and Nikaido, H. (1995)

Lignin as Phenol Substitute in Phenolic Adhesive

Lignin as Phenol Substitute in Phenolic Adhesive

Lignin-based adhesive had 50% less formaldehyde on weight basis than PF

Lignin as Phenol Substitute in Phenolic Adhesive

Note: SW=Softwood, HW=Hardwood, CS=Corn Stover, WS=Wheat StrawKr=kraft,EH=Enzymatic Hydrolysis, OS=organosolv, So=Soda

Lignin-Based Formaldehyde-Free Biobased Resin

Phenolic Resin Properties

Resin Properties	Phenol-Formaldehyde (PF)	Lignin-Formaldehyde (LF)	Lignin-Glyoxal (LG)
рН	12 ± 0.1	10.9 ± 0.1	9.8 ± 0.1
Alkalinity (%)	5.1 ± 0.1	2.5 ± 0.1	3.6 ± 0.2
Viscosity (mPa.s)	640 ± 6	410 ± 5	200 ± 6
Free Formaldehyde Content (%)	0.17 ± 0.03	0.60 ± 0.02	0
Solid Content (%)	42.3 ± 0.2	25.1 ± 0.1	30 ± 0.2
Gelation Time (min)	11.2 ± 0.4	7.3 ± 0.5	7.7 ± 0.2

Resin Curing Temperature

- LF resin cured at similar temp. as of PF
- LG required higher temp.
 curing
- LG resin is only suitable for interior application

Adhesive Performance

Formaldehyde LD₅₀: 500–800 mg/kg Glyoxal LD₅₀: 2960–8979 mg/kg Lignin-Glyoxal for Interior Applications

Lignin-Based Polyurethane

Lignin: A Natural Polyol

Lignin is a Natural Polyol

Lignin Reactivity Analysis

- Heated samples at 50°C for 1hr
- Analyzed with FTIR and titration (D5155)

Reactivity of Different Lignins with Phenyl Isocyanate

Lignin Reactivity with Isocyanates (³¹P NMR)

Functional groups	% OH Reduction ± STDEV
Aliphatic	88 ± 1
Guaiacyl	77 ± 2
p-Hydroxyl	76 ± 1
Syringyl	81 ± 1
Carboxylic acid	61 ± 0

Lignin-Based Polyurethane Adhesive

- Replaced 100% of petroleum-based polyol with lignin
- High-solid, zero VOC, contains more than 30% lignin (on weight basis)
- Can be cured at room temperature or higher

Lignin-Based Polyurethane Waterborne Coating

³¹P NMR Data of Isolated Lignin Samples

Hydroxyl Content (mmol/g)

Cu-AHP Lignin

Lignin-Based PU Dispersion Resins

Lignin-Based Polyurethane Waterborne Coating

- ✤ Replaced 100% of petroleum-based polyol with Lignin (80%) and soy-polyol (20%)
- Used biobased internal Emulsifier and Solvent

Lignin-Soy Based PUD Resins

Lignin-Based Polyurethane Waterborne Coating

Lignin-Based PUD Resins

Commercial PUD

Lignin-Based Epoxy Resins

Lignin Epoxidation

Measuring Epoxy Content

- Auto- Titration: According to modified ASTM D1652-11. the epoxidized lignin should have been soluble in dichloromethane.
- **2.** ¹H NMR: Using Proton NMR with 1,1,2,2 Tetrachloroethane as internal standard

Epoxy Content of Different Lignins

Sample ID	Description	%Epoxy Content (Titration)	EEW (Titration)	%Epoxy Content (H NMR)	EEW (HNMR)
1	Kraft softwood	9.56 ± 0.3	450 ± 12	9.72	442
2	Kraft hardwood	6.79 ± 0.1	633 ± 11	7.00	614
3	Soda hardwood	8.59 ± 0.4	500 ± 20	8.21	524
4	Organosolv Wheat Straw	12.40 ± 0.3	347 ± 9	12.53	343
5	Organosolv bagasse	5.93 ± 0.1	725 ± 14	5.87	732
6	Organosolv peanut shell	5.18 ± 0.1	830 ± 19	4.93	872
7	Organosolv hardwood	8.75± 0.2	491 ± 10	8.93	481
8	Kraft softwood	7.97 ± 0.1	540 ± 11	7.88	546
9	Kraft softwood	10.01± 0.2	430 ± 10	9.81	438
10	Kraft hardwood	11.27 ± 0.3	382 ± 9	11.50	374
11	Kraft hardwood	12.14 ± 0.1	354 ± 4	11.98	359
12	Organosolv wheat straw	4.35 ± 0.1	988 ± 17	3.81	1128
13	Kraft softwood	8.63 ± 0.2	498 ± 10	8.98	479 ³

Lignin-Based Epoxy

Water Dispersion Fully Biobased Epoxy Resin

Biobased UV-Stabilizer

Weathering of Wood

- Discoloration
- Roughening
- Checking of wood
- Mildew growth
- Delamination of fibers

Figure —Surface changes on typical softwood during the natural weathering process.

Photo-Degradation of Lignin

Absorption coefficient of wood

components:

- 1. Lignin: 80-95%
- 2. Carbohydrates: 5-20%
- 3. Extractives: 2%

Formation of phenoxy radicals that can be readily oxidized to yellow ortho and para-quinones.

Effect of Various Additives in Increasing Carbonyl Index

- Decrease in carbonyl index (%) $\left(\frac{A\ 1735}{A2921}\right)$ of various samples after 35 days of UV irradiation (lower numbers are better),
- Bars with the same color are not significantly different (α =0.05).
- Zinc Oxide and T-479 were the best.

Effect of Various Additives In Reducing Lignin Index

- Decrease in lignin index (%) $\left(\frac{A\ 1508}{A2921}\right)$ of various samples after 35 days of UV irradiation (lower numbers are better),
- Bars with the same color are not significantly different (α=0.05)
- Cerium Oxide was the best.

90

SEM Images of Epoxy Resins Before and After UV

Epoxy resins containing 1% HNT-lignin had the lowest color change (best performance)

SEM Images of Epoxy Before & After UV-Exposure

There is no cracks in the epoxy resin containing 1% HNT-encapsulated lignin after UV-Exposure

Acknowledgements

MEXION

Responsible Chemistry

SHERWIN-WILLIAMS.

46

Would you consider using lignin?

Mojgan Nejad, Nejad@msu.edu