The Higher the Better? What Does Zeta Potential Tell About Design of Wetting and Dispersing Additives?

Gillian Lazarus, Matthew Burge, PhD; Robin von Hagen, PhD; Anne Vogel

Wood Coatings and Substrates Conference, Greensboro, September 27, 2024

What is zeta potential?

How do wetting & dispersing additives influence zeta potential?

When to add it to your toolbox?

Zeta Potential

Ion layers with particle (negative surface potential)

Zeta Potential Creation

Zeta Potential Side View

Page 5 11/19/2024

pH Value and Surface Charge of Various Pigments in Water

Page 6 11/19/2024

Clear Basecoat

based on acrylic dispersion binder reduced to approximately 10% solids

Zeta Potential Curve as a Function of Electrolyte Concentration

 \rightarrow decreasing the number of particles, Zeta Potential increases

· correlates with number of particles, not with particle size

Smaller Diffuse Layer

Larger Diffuse Layer

Page 8 11/19/2024

Zeta Potential

Pigment affinic group

O BYK

Electrostatic stabilization

(electrostatic repulsion)

Steric stabilization (steric hindrance) Electrosteric stabilization

Page 13 11/19/2024

Page 14 11/19/2024

Steric stabilization Elect

Electrosteric stabilization

Electrostatic stabilization (electrostatic repulsion)

Steric stabilization (steric hindrance)

Electrosteric stabilization О ВУК

Page 16 11/19/2024

Wetting and Dispersing Additives Influence Zeta Potential

Molecular Design of W&D Additive on Zeta Potential

Page 19 11/19/2024

O BYK

Molecular Design of W&D Additive on Zeta Potential

Page 20 11/19/2024

Conclusion: Zeta Potential for Design of W&D Additives

OPPORTUNITIES	LIMITATIONS
 Helpful technique to detect W&D additive mode of action (electrostatic vs. electro-steric) stabilization Can evaluate physical stability of electrostatically stabilized systems 	 Unable to establish correlation between zeta potential and state of dispersion Sterically stabilizing W&D additives result in low zeta potential → challenging to differentiate
 Knowledge about particle surfaces: Determine optimal coverage at the surface Adsorption behavior of differing compounds Optimization and design of W&D additive Analytical tool for process control with high reproducibility 	 No information on let-down compatibility and paint properties. Zeta potential value of a sample on its own does not tell the whole story Zeta potential should be combined with other analytical tools, such as particle size measurement and physical testing to get better understanding

Thank you for your attention.

A member of **C** ALTANA

O BYK

ANTI-TERRA[®], AQUACER[®], AQUAMAT[®], AQUATIX[®], BENTOLITE[®], BYK[®], BYK-AQUAGEL[®], BYK[®]-DYNWET[®], BYK-MAX[®], BYK[®]-SILCLEAN[®], BYKANOL[®], BYKCARE[®], BYKETOL[®], BYKJET[®], BYKONITE[®], BYKOPLAST[®], BYKUMEN[®], CARBOBYK[®], CERACOL[®], CERAFAK[®], CERAFLOUR[®], CERAMAT[®], CERATIX[®], CLAYTONE[®], CLOISITE[®], DISPERBYK[®], DISPERPLAST[®], FULACOLOR[®], FULCAT[®], GARAMITE[®], GELWHITE[®], HORDAMER[®], LACTIMON[®], LAPONITE[®], NANOBYK[®], OPTIBENT[®], OPTIGEL[®], PURABYK[®], RECYCLOBYK[®], RHEOBYK[®], SCONA[®], SILBYK[®], TIXOGEL[®] and VISCOBYK[®] **are registered trademarks of the BYK group.**

The information contained herein is based on our current knowledge and experience. No warranties, guarantees and/or assurances of any kind, either express or implied, including warranties of merchantability or fitness for a particular purpose, are made regarding any products mentioned herein and data or information set forth, or that such products, data or information may be used without infringing intellectual property rights of third parties. Any information about suitability, use or application of the products is non-binding and does not constitute a commitment regarding the products' properties, use or application. Contractual terms and conditions, in particular agreed product specifications, always take precedence. We recommend that you test our products in preliminary trials to determine their suitability for your intended purpose prior to use. We reserve the right to make any changes and to update the information herein without notice.

Zeta Potential Instrumentation

Device - Method

Device Quantachrome DT310 / 1201

Measuring probe: Sender and receiver pH adjustment: Titration with potassium hydroxide (1N KOH) and hydrochloric acid (1N HCI)

Electroacoustic measurement method CVI (Colloidal Vibration Current)

Ultrasound \rightarrow Particle movement \rightarrow CVI

O BYK