https://aas.uncg.edu/research/2022/08/01/dr-maia-popova-chemistry-receives-new-nsf-grant-to-study-stem-teaching-and-learning/
Understanding the complex relationships among teaching, course environments, and student learning is important to inform improvements in science, technology, engineering, and mathematics (STEM) education. This project aims to serve the national interest by studying the connections between several aspects of inorganic chemistry instruction and college students’ learning about molecular-level symmetry, a concept that is essential for understanding how three-dimensional structures influence the properties of substances. Currently, little is known about how instructors teach about symmetry or how students use their understanding of it to solve problems. This project plans to collect and analyze data from inorganic chemistry courses around the country to characterize teaching practices, course environments, and their connections to student learning. The results of this work will be used to develop evidence-based professional development materials for inorganic chemistry instructors to enhance student learning about molecular-level symmetry.
The project will be conducted by a collaborative research team from the University of North Carolina at Greensboro and the University of Wisconsin–Madison. The project team will employ the Consensus Model of Teacher Professional Knowledge, which positions the relationship between instruction and learning within a framework of multiple factors, such as instructor and student beliefs, behaviors, and knowledge. Faculty and student research participants will be recruited from twenty-six inorganic chemistry courses from a variety of institution types across the nation. The research questions to be addressed include: (1) How do the teaching beliefs of inorganic chemistry instructors impact their classroom practices when teaching symmetry? (2) How do classroom practices for teaching symmetry emerge from the mutual bootstrapping of personal pedagogical content knowledge (PCK), PCK & skill, and classroom context? (3) How can student outcomes for symmetry be traced to classroom practices? (4) How can student amplifiers and filters explain different student outcomes across different sets of classroom practices? and (5) What constitutes topic-specific professional knowledge for teaching symmetry? To address these research questions, the project team plans to conduct multiple embedded case studies using convergent mixed methods. A variety of quantitative and qualitative data streams will inform each case. Data sources will include interviews with faculty members and students, video observations of symmetry instruction, course artifacts, and student learning and skills assessments. In constructing each case, the project team will use a combination of inductive and deductive coding methods to analyze qualitative data prior to integrating with quantitative data. An expert advisory panel will monitor the success of the project and provide important feedback at specific decision-making points. The results of this project will be disseminated to researchers and educators via workshops, conference presentations, and journal publications. The project is expected to advance our understanding of the learning and teaching of symmetry, as well as various instruction-learning relationships. Thus, the findings will have potential to improve undergraduate chemistry education and will be of interest to education researchers from a variety of STEM disciplines. The NSF IUSE: EHR Program supports research and development projects to improve the effectiveness of STEM education for all students. Through the Engaged Student Learning track, the program supports the creation, exploration, and implementation of promising practices and tools.